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In this paper, we identify a new type of resonant triad which operates in a parallel 
or nearly parallel shear flow with a symmetric profile. The triad consists of a planar 
sinuous mode, an oblique sinuous mode and an oblique varicose mode, but is not 
of the usual subharmonic-resonance form. The development of the triad is studied 
in the non-equilibrium critical-layer rigime. The equations governing the evolution 
of the modes are derived. We show that the quadratic resonance can significantly 
enhance the growth of both the oblique sinuous and varicose modes, and may cause 
them to grow super-exponentially. This can lead to a subsequent stage in which the 
oblique sinuous mode produces a back reaction on the oblique varicose mode through 
a phase-locked interaction, causing both oblique modes to evolve even more rapidly. 
We suggest that the resonant triad is a viable mechanism for the development of 
three-dimensional structures and varicose components observed in the later stage of 
plane wake transition. 

1. Introduction 
As with boundary layers and mixing layers, plane wakes and jets have been studied 

extensively during the past few decades because of their practical applications as well 
as their fundamental importance to the understanding of transition to turbulence. 
A new aspect associated with such symmetric shear flows is that they can support 
both sinuous and varicose modes; the vertical velocity distribution of the former 
is symmetric while that of the latter is antisymmetric about the centreline. In the 
linear rbgime, two-dimensional sinuous modes have larger growth rates, and hence 
dominate the initial stage of transition. This earlier stage has been the subject of 
most previous investigations (e.g. Sat0 & Kuriki 1961; Sat0 1970; Sat0 & Saito 1975, 
1978; Mattingly & Criminale 1972; KO, Kubota & Lees 1970; Miksad et al. 1982). 

Recent experimental studies reveal that further downstream, three-dimensional 
disturbances develop rapidly and become dominant (Cimbala, Nagib & Roshko 1988; 
Corke, Krull & Ghassemi 1992; Williamson & Prasad 1993a,b; see also Sat0 & Kuriki 
1961). Moreover, varicose components are found to attain an appreciable magnitude 
(Corke et al. 1992). The objective of this paper is to propose a viable mechanism for 
the preferential amplification of (i) varicose modes, and (ii) three-dimensional sinuous 
modes, observed in the later stage. 

The r81e of varicose modes does not seem to have received sufficient theoretical 
attention. They are often disregarded on the grounds that they have a smaller linear 
growth rate. However, Wygnanski, Champagne & Marasli (1986) found that although 
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the prevailing instability is sinuous in nature, a small varicose component can alter 
the gross features of the flow pattern. In order for the calculated streamline to mimic 
the observed flow structure in experiments, varicose components have to be included. 
Further investigations of Marasli, Champagne & Wygnanski (1989) show that a 
varicose mode with a magnitude half that of the sinuous mode can be sustained in 
the flow far downstream. 

The interaction between a nearly neutral (two-dimensional) sinuous mode and a 
nearly neutral (two-dimensional) varicose mode in a special symmetric shear flow, the 
Bickley jet, was considered by Leib & Goldstein (1989). For such a profile, the latter 
mode is the subharmonic of the former, and hence they satisfy Kelly’s (1968) resonance 
condition. Leib & Goldstein investigated such a resonance in the non-equilibrium, 
(strongly) nonlinear critical-layer rkgime, and found that the development of the 
varicose mode was either suppressed or hardly affected by the sinuous mode. This 
implies that the Kelly type of resonance cannot induce the observed development of 
varicose modes. For a general symmetric profile, it is not known whether a planar 
(nearly) neutral varicose mode is the subharmonic of the planar sinuous mode, and 
so even the existence of the Kelly type of resonance is an open question. 

As indicated above, another concern of this paper is with the rapid development of 
three-dimensional disturbances. Usually the subharmonic resonant-triad interaction, 
which was originally proposed by Raetz (1959) and Craik (1971), provides a possible 
explanation. Indeed, recent studies of such a mechanism have improved our under- 
standing of three-dimensional transition processes in boundary layers as well as in 
other shear flows; see for example Goldstein & Lee (1992), Wu (1992, 1993, 1995), 
Mankbadi, Wu & Lee (1993), Wundrow, Hultgren & Goldstein (1994), Lee (1994) 
and Mallier & Maslowe (1994). However, in a symmetric shear flow such as a plane 
wake, this mechanism ceases to operate for sinuous modes because the interaction 
coefficients are identically zero as a result of the symmetry of the flow (see e.g. Wu 
1995). Subharmonic resonance is active among appropriate varicose modes, and was 
studied by Mallier (1995). He further proposes that through mutual interactions, the 
varicose modes may affect the development of sinuous modes. However, this requires 
the planar varicose mode to have a magnitude much larger than that of the sinuous 
modes. Since varicose modes have a much smaller linear growth rate, the scenario 
suggested by Mallier is unlikely to occur unless the planar varicose mode is prefer- 
entially excited by some means. For natural transition, a more viable mechanism for 
promoting the rapid growth of three-dimensional disturbances has been proposed by 
Wu & Stewart (19964. This is the so-called phase-locked interaction among sinuous 
modes which share the same phase velocity. It is found that this mechanism can 
explain major experimental observations quite well, although a detailed quantitative 
comparison is yet to be achieved. 

In the present paper, we shall show that while the subharmonic resonance (in- 
volving solely sinuous modes) is inactive, there exists an active resonant triad of 
non-subharmonic type which consists of a planar sinuous mode, an oblique sinuous 
mode and an oblique varicose mode. We show that the resonance significantly en- 
hances the growth of the oblique varicose mode, and may cause both the oblique 
sinuous and varicose modes to grow super-exponentially even though their magni- 
tudes are infinitesimal. This offers a possible mechanism by which three-dimensional 
disturbances, particularly disturbances of varicose nature, attain a significant magni- 
tude in the later stage of transition. Compared with the phase-locked interaction of 
Wu & Stewart (19964 such a resonant interaction requires a more restrictive condi- 
tion in the sense that it can only occur among the modes with particular wavenumbers 
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or frequencies. However, the necessary threshold magnitude of the planar sinuous 
mode for this resonance to take place is much smaller than that for the phase-locked 
interaction. Hence the two mechanisms are complementary to each other. 

In addition to the quadratic resonance, a phase-locked interaction can take place 
between the two oblique modes. Namely, the oblique sinuous and varicose modes can 
interact to generate an exceptionally large difference mode which in turn interacts 
with the oblique sinuous mode to affect the development of the oblique varicose mode 
(cf. Wu & Stewart 1 9 9 6 ~ ) .  This effect will be included in our analysis. 

The rest of the paper is organized as follows. In the next section, we show that 
for the Bickley jet, appropriate sinuous and varicose modes can form a resonant 
triad. We further show that such a resonant-triad interaction of mixed modes is 
likely to exist in any symmetric shear flow. For this reason, we choose to formulate 
the problem for a shear flow with an arbitrary symmetric profile. In particular, 
we consider the evolution of the triad in the so-called non-equilibrium critical layer 
rCgime. The appropriate asymptotic scalings are specified. This is followed by a 
systematic expansion of the solution in the main part of the flow in $3. The flow 
within the viscous, non-equilibrium critical layers is analysed in $4, where the solutions 
are obtained analytically. Matching them onto those in the outer region, we obtain the 
(coupled) amplitude equations ($5). In $6, the general analysis is specialized to a plane 
wake, and the coefficients involved in the amplitude equations are evaluated explicitly. 
The amplitude equations are studied in $7, both analytically and numerically. In $8, 
the implications of the results are discussed and related to experiments on transition 
of a plane wake. The Appendix contains the analysis of the phase-locked interaction 
between the two oblique modes. 

2. Formulation and scalings 
The flow is to be described in terms of Cartesian coordinates (x ,y , z ) ,  where x ,  

y and z are streamwise, transverse and spanwise coordinates respectively. As usual, 
they are non-dimensionalized by d', the thickness of the shear layer at a typical 
streamwise location, say x = 0. The time t, the velocity ( U ,  V ,  W )  and the pressure p 
are non-dimensionalized by d'/Uo, UO and poU; respectively, where UO is a reference 
velocity and po the density of the fluid. The Reynolds number R is defined as 

where v is the kinematic viscosity. Throughout this paper, we shall assume that R S- 1 
so that a self-consistent approach can be pursued. The analysis is to be applicable to 
any inviscidly unstable, almost parallel two-dimensional flow with a velocity profile 

(U(X3,Y),R-l~I(X3,Y),O) , 

which will be assumed to be symmetric about y = 0. The dependence of the mean-flow 
velocities on the slow variable 

~3 = x / R  , 
is associated with the non-parallel flow effect, and is parametric in the present study. 
This basic flow is perturbed by disturbance (u,  u, w )  and the perturbed flow is denoted 
by 

(U ,V ,W)  = ( U + ~ , R - ' P + U , W ) .  
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2.1. Existence of an active resonant triad of mixed modes 

We are concerned with possible active resonant-triad interaction in symmetric flows. 
Instead of the subharmonic resonance of varicose modes (Mallier 1995), we look for 
a different resonant triad in which the planar sinuous mode plays the most active 
r81e in the sense that it can significantly enhance the growth of the oblique sinuous 
and varicose modes, in line with experimental observations. In order to be specific, 
we first consider a special symmetric shear flow with the profile 

u = UO - sech2y , (2.1) 

where Uo is the free-stream velocity. It is well known that for such a profile, there 
exist a planar neutral sinuous mode (Drazin & Howard 1966) 

aso = 2 ,  c = UO - , cpo = sech2y, (2.2) 

(2.3) 

2 

and a planar neutral varicose mode 

avo = 1 , c = Uo - 2 , cp0 = sinhysech2y, 

where a,o and a,o are the streamwise wavenumbers of the sinuous and varicose 
modes respectively, and c is the phase speed, while $s and 6" are the corresponding 
eigenfunctions of the vertical velocities. 

Suppose that (a,,p,c,) is an oblique sinuous mode, and (a,,-B,c,) an oblique 
varicose mode. It follows from Squire's transformation that if 

af + p2 = 4 , and at + p2 = 1 , (2.4) 

then these two oblique modes are both neutral and have the same phase velocity as the 
planar sinuous mode (ad, 0, c). It is easy to check that (:, i f l ,  c )  and (i, -i fi, c) 
satisfy (2.4), and hence are neutral oblique sinuous and varicose modes respectively. 
Moreover, the following three modes, 

(2,0,c), ( : ,$Jrs ,c> 9 ( i , - $ J r s , C > ,  (2.5) 

form a resonant triad, since the quadratic interaction between the planar and sinuous 
modes produces the oblique varicose mode, while the oblique varicose mode interacts 
with the planar mode to produce the oblique sinuous mode. Note that this is not the 
usual subharmonic resonance. 

Although such a resonant triad of mixed modes is identified for a special profile, it 
is likely to exist in any symmetric shear flow, as we shall argue below. For a symmetric 
shear flow, there usually exist a two-dimensional neutral sinuous mode, say (a ,~,  0, c), 
and a two-dimensional neutral varicose mode, say (a ,~,  0, c),  where both modes have 
the same phase speed c since it equals the basic-flow velocity at the inflexion points. 
An oblique sinuous mode (as, p, c) ,  and an oblique varicose mode (a", -p, c) are also 
neutral if 

If we further require that 

then the three modes 

a: + 8' = a:o , and a: + p2 = ato . (2.6) 

(2.7) 

(aso, 0, c) > (as, B, c) 9 (a", -B, c)  7 (2.8) 

(%o, 0, c) > (as, -P, c)  > (g", P, c)  3 

as + a, = as0 , 

or alternatively, 
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form a resonant triad, where 
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as can be found from (2.6) and (2.7). The first of the above equations indicates that 
the only condition for the existence of such a triad is 

(2.10) 
1 

> zau0 ’ 
which can be satisfied in general, since calculations of eigenvalues for different profiles 
suggest that it is usually the case that aso > a , ~  (Sato & Kuriki 1961; Mattingly & 
Criminale 1972; Chen, Cantwell & Mansour 1990). We note that in addition to 
the oblique modes in (2.8), their ‘mirror’ modes can also be included so that the 
disturbance consists of five waves, 

(aso, 0, c) 9 (as, +P, c) 9 (av, kP, c) * (2.11) 

In the regime to be studied in the present paper, such an extended form of disturbance 
evolves in the same fashion as (2.8), and hence it suffices to consider the resonance 
among the three waves in (2.8). 

The existence of a resonant-triad interaction among mixed modes in a symmetric 
shear flow is a fundamental observation of this paper. The evolution of the triad can 
be considered in different asymptotic rCgimes. In the present paper, we shall study 
this in the so-called non-equilibrium critical-layer regime as we believe it to be the 
most relevant to experiments. Moreover, the amplitude equations relevant to other 
regimes can be obtained by taking an appropriate limit of our results (see $7.1). For 
a survey of recent studies of non-equilibrium critical layers, the reader is referred to 
the reviews by Goldstein & Lee (1993), Goldstein (1994) and Cowley & Wu (1994). 
Since the resonant triad identified above is likely to be generic, we shall first perform 
the analysis for a symmetric shear flow with an arbitrary profile, and then specialize 
it to the profile (2.1). 

2.2. Formulation 
When a resonant triad of sufficiently small magnitude is excited upstream, each wave 
initially evolves exponentially according to linear, quasi-parallel instability theory, 
and then becomes neutral at some location downstream due to the viscous spreading 
of the basic flow. For a disturbance in the form of a resonant triad, the three waves 
become linearly neutral at the same streamwise location. Near such a location, the 
disturbance has attained the maximum magnitude through linear growth. Moreover, 
as the disturbance becomes nearly neutral, critical layers emerge and nonlinear 
interactions between the modes can first take place there, as recent studies have 
shown (e.g. Goldstein & Lee 1992; Wu 1992; Goldstein 1994; Cowley & Wu 1994). 
Therefore, it is appropriate to assume that nonlinear effects become important slightly 
upstream of the linearly neutral station. The local growth rate is small, of order p say, 
and the local frequencies of the three modes deviate from their local neutral values 
by O(p).  More precisely 

wso = asoc + paaso , 0, = asc + pass , 0, = a,c + paus, , 

where w , ~ ,  w, and w, are the frequencies of the planar sinuous mode, the oblique 
sinuous mode and the oblique varicose mode respectively, while ad, as and a, are 

(2.12) 
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their wavenumbers. The parameters SO, S ,  S, < 0 represent the scaled deviations 
of the phase speeds from the neutral value. In order to accommodate the general 
case where SO, S and S, are not equal, and also to include the effect of simultaneous 
temporal-spatial modulation, we introduce a slow time variable 

T = p t .  (2.13) 

For later convenience, we also introduce 

[ = x - c t ,  (2.14) 

which is the coordinate travelling with the common phase velocity (to leading order). 
To leading order, the disturbance in the main part of the flow field has the form 

u = eAO(xl ,  T ) 6 0  eiadOl +6,A,(x1, T ) &  ei(as5-Bz) +6 t i l l  A ( x  1, T I &  e'(aol+b'z) + ... , (2.15) 

where E ,  6,, 6, 4 1 represent the magnitudes of the three modes respectively, while 
Ao, A ,  and A ,  are the associated amplitude functions, which are allowed to depend 
on the slow streamwise variable x1 = p x  as well as on the slow time variable T .  A 
scaling argument similar to that of Wu (1992) shows that when 

f = W4) , (2.16) 

a resonance takes place among the three waves. It follows from (2.16) that the slow 
time variable T and the slow streamwise variable x1 should be defined as 

(2.17) 

where the factor c-l is introduced for later convenience. If a,o > a,o, our scaling 
argument further shows that when 

6, - 6, = O ( P )  , (2.18) 

the oblique sinuous mode will produce a feedback effect on the varicose mode through 
a phase-locked interaction (cf. Wu & Stewart 1996~). This interaction, however, is 
negligible when 

6, - 6, Q O ( P )  . (2.19) 
The regime with the above restriction will be referred to as the parametric resonance 
stage. We shall show that in this stage, both the oblique sinuous and varicose modes 
experience super-exponential growth, while the plane mode still evolves exponentially. 

Given that the two oblique modes have smaller linear growth rates, for natural 
transition (2.19) is likely to hold at the beginning of the parametric resonance. 
However, the oblique modes may attain the magnitude specified by (2.18), either 
because of initial forcing or as a result of the super-exponential growth in the 
parametric resonance stage. Thus, we shall adopt the scaling (2.18) so as to include 
the effect of the phase-locked interaction. We note that even if the mirror mode of 
each oblique mode is included, there will be no interaction between the modes in each 
pair, since for such an interaction to occur, the oblique modes must have a magnitude 
of O(c3l4), much larger than that prescribed by (2.18) (cf. Goldstein & Choi 1989; 
Wu, Lee & Cowley 1993; Wu & Stewart 1996a). 

In order to investigate the viscous effect, we consider the distinguished case where 
viscous diffusion terms appear at leading-order in the critical-layer equations. This 
occurs when (cf. Wu et al. 1993) 

114 -1 T =e' l4t ,  XI = E c X ,  

R-1 = ~ € 3 1 4  (2.20) 
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where the parameter i characterizes the relative importance of viscosity to nonlinear 
effects (cf. Haberman 1972). Throughout @3-6,1 will be assumed to be of order one 
so that the critical layers are both viscous and non-equilibrium in nature. The highly 
viscous case corresponding to i being asymptotically large will be discussed in $7.1 

The basic flow u evolves on the very slow streamwise variable x3, and it is sufficient 
to approximate its profile at x3 as a Taylor expansion about x3 = 0: 

(2.21) 
a u  
8x3 

q y ,  x3) = U ( y )  + -x3 + . . . = U ( y )  + A€1'2X1 U1(y) + . . . , 
where the term i ~ . ' / ~ x 1  Ul (y) represents the non-parallel flow correction. 

3. Outer solution and solvability conditions 

velocity (u, o, w) and the pressure p of the disturbance are expanded as 
Outside the critical layers, the unsteady flow is basically linear and inviscid. The 

u = f(-iaSo)-'4b + 6u, + 6u, + h2pp3uf + . . . , 

w = 8 w s + 6 w , + 6  p W f +  ... , 
p = €Po + 6 p s  + 6pu + 6 2 p - 3 p  f +... , 

(3.1) 

(3.3) 

(3.4) 

v = € 4 0  + 84, + 64, + ~ ~ / ~ 4 t )  + 6 ~ ~ / ~ 4 6 ~ )  + 6 ~ ~ / ~ 4 h ~ )  + 62p-30f + . . . , (3.2) 
2 -3 

where 6 = 6, = 6,. In the expansion, we have only retained those terms that will be 
relevant for the derivation of the amplitude equations. 

The disturbance starts from the linear stage upstream and evolves downstream to 
the rigime where the resonant interactions take place. Guided by the earlier linear 
solution, in the nonlinear stage we seek solutions of the form 

$0 = ~ o ( x l ,  ~ ) $ , ( y )  eiaa[ + C.C. , 
4, = A,(x~,  ~ ) $ , ( y )  ei('SC-fiz) + C.C. , 
4u = A , ( x ~ ,  ~ ) $ , ( y )  ei('UC+fiz) + C.C. , 

(3.5) 
(3-6) 
(3-7) 

where $o, $s and $u are the eigenfunctions of the three modes. The functions $o and 
6, satisfy Rayleigh's equations 

u,, 
L(a,c) = (" - 2 )  - - , 

aY U - C  
(3.9) 

which is parameterized by a and c. The boundary conditions are 

$ o + ~ ,  $,+O as y + f m  

Let q = y - yf, where yf is the j th critical level at which U = c. Since the profile 
under consideration is symmetric, j = 1,2. The two critical layers are located at the 
inflexion points; so UL = 0. As q + +O, 

(3.10) 

(3.11) 
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Because the eigenfunctions of the sinuous and varicose modes, $o and &, are 
symmetric and antisymmetric about y = 0 respectively, we have 

b l = b z = b ,  a l = - a 2 = a ,  (3.12) 

b l =  -b2 = b , (3.13) 

The function $s satisfies the same equation as $o except that a,o in (3.8) is replaced 

A A h  

81 = 62 = B . 

by 

Since it is assumed that a,o = ti,, it follows that 
a, = (a; + . 

$, = $o . 

The solutions for $#I, 4:') and 4:') (see (3.2)) can be written as 

(3.14) 

(3.15) 

(3.16) 

(1) - -('I 4o - 4o (y,xl, T)eiadoi + C.C. , 
(1) - -(I) 4s - 4, (y, x1, T )  ei(asc-pz) + C.C. , 
(1) - -(I) 4v - 4v (y, x1, T )  ei(aoc+pz) + C.C. 

The function 6:) satisfies the inhomogeneous Rayleigh equation, 

As q -+ +O, 

4:) --+ d; + cFq + bjsjq log lql + . . . , (3.18) 

where cf and d: are as yet unknown functions of x1 and T ,  and 

(3.19) 

Multiplying both sides of (3.17) by $o, and integrating from -cc to +co, we obtain 
the solvability condition for (3.17) 

(3.20) 
i 

where the sum is over the two critical layers, and 5"1 and L?2 are constants defined by 

(3.21) 

with 1 2  being interpreted as a Cauchy principal value. 
The functions 4;) and 4:' satisfy equations similar to (3.17), and hence as q -+ &O, 

4:') -+ 2; + $q + b$,q log Iql + . . . , (3.22) 

4;) + 2; + 2;q + 6j$jq log 1q1 + . . . , (3.23) 

where 5j and 9 j  have the same expressions as si except that a , ~  is replaced by a,, a,, 

and A0 is replaced by A, and A, respectively. The solvability conditions for 6:) and 
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6;) lead to 

where 

(3.24) 

(3.26) 

The jumps (c; - c;), (q - $) and (q - q) in (3.20), (3.24) and (3.25) are to be 
determined in the next section by a detailed analysis of the dynamics within the 
critical layers. 

We now seek the solutions for the pressure, and the streamwise and spanwise 
velocities of the disturbance. The leading-order solutions for the pressure of the three 
modes take the form 

(3.27) 
(3.28) 
(3.29) 

po  = A o ( x l ,  T)po eiccde + C.C. , 
p ,  = A, (x l ,  T)ps ei(asr-pz) + C.C. , 
pu = Au(x l ,  T)p, ei(aue+pz) + C.C. 

It is found that as y -+ +O, 

(3.30) 

(3.31) 

(3.32) 

-1 - I  po --+ iasO U,bj + . . . , 
p S  -+ i&;'U; cos Obi + . . . , 

h .--I -, p ,  -+ la, U , C O S O , ~ ~  + .. . , 
where we have defined 

o = tan-' b/a,  , 8, = tan-' b/a,  . 

It follows from the continuity equation that the streamwise velocity of the planar 
mode is (-iaso)-'&. The solutions for the streamwise and spanwise velocities of the 
sinuous oblique mode, us and ws, take the form 

us = A,(x', ~ ) i i ~  ei(asc-pz) + c . c. , w, = i ~ , ( x ~ ,  T ) W ,  ei(asc-Bz) + c . .  c (3.33) 

(3.34) 

(3.35) 

Similarly, the streamwise and the spanwise velocities of the oblique varicose mode, 

As in Wu (1992), it can be shown that as y --+ &O, 

ii, -+ +a,)-' sin2 0biy-' + . . . , 
W, --+ ti;' sin Objq-'+ . . . . 

u, and w,, can be written as 

u, = A"(x', ~ ) i i ,  ei(ccoc+pz) + C.C. , w, = - i ~ , ( x ~ ,  T ) W ,  ei(aoc+pr) + c * c - 9  

and as y -+ k0, 

ii, -+ -(ia,)-' sin2 0,6jy-'+ . . . , (3.36) 

au --+ ti;' sin o,ijq-' + . . . . (3.37) 

The 0(d2pP3)  terms in (3.1)-(3.4) with the subscript f are associated with the 
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difference mode forced by the quadratic interaction between the two oblique modes 
within the critical layer. They have the form 

i(ari-2Bz) + C.C. , 
(U f ,  " f ,  W f , P f )  = (q, Of, iWf, P f )  e 

L ( E f , C ) V f  = 0 , 

where af = a, - a". The function Of satisfies 

where = (a; + 4fl2)ll2. As y + f O ,  

O f +  D j + C F y +  ... , (3.38) 

where C,' and D j  are functions of x1 and T ,  and the jump (CT - C;) in (3.38) is 
given by (A5), the right-hand side of which acts as a forcing term to generate Of.  

The solutions for iif, Wf and p f  are similar to ii,, W, and P ,  (see (3.34), (3.35) and 
(3.31)), except that as, a,, bj  and 8, are replaced by q, af, D j  and 8f  respectively, 
where 

ef = tan-' 2p/af . 
Because of the symmetry relations (3.12) and (3.13), and the fact that 

m Y c )  = - W Y J  7 

A f ,  defined by (A6), takes the same value at the two critical levels; so in view of 
(A 5 ) ,  we can write 

CF(x1, T )  = eFAf(x1 ,  T ) ,  Dj(x1, T )  = B j A f ( x 1 , T )  , (3.39) 

where ef and hj are constants. The jump (A5) now simplifies to 

et- - & = 1 .  (3.40) J J 

The function U f  can be written as 

Uf = Af(X1, T)v^f 7 

where it transpires that A f ( x l ,  T )  is essentially the amplitude function of the forced 
difference mode. The function B f  depends on y only and satisfies 

L(&f,C)v^f = 0 . (3.41) 

As y + f0,  
O,+fij+e:q+ ... . (3.42) 

The symmetry of U ( y )  and the jump (3.40) imply that the forced difference mode, v ^ f ,  
is symmetric about y = 0. Hence we have 

A h A 

D1 = 0 2  = D . 
Equation (3.41) subject to (3.42) and (3.40) can be solved to determine h, which will 
be needed in evaluating one of the coefficients in the amplitude equations. 

4. Inner expansion 
Within the j th critical layer, the appropriate local transverse coordinate is 

y = (Y - Y 9 / P  . 
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The expansion takes the following form: 

u = 6p-1 [o, ei(a$i-Pz) +fi e'(~u5+82) + c . .  c 1 

(4.1) 

... , (4.2) [Dj ei(a+2pz) + c.c.] + 6 2 p - 2 ~ 1  + ep2v2 + 8p2v3 + 

(4.3) 

2 -4 A +6 p [u, ei(afc-2b2) + c.c.] + d 2 p - 3 ~ 1  + 6 p ~ 2  + . . . , 
u = E [ & ( X , )  eiadc + C.C.] + 6 [A,(,,> ei(asc-pz) +A,(xl) e'(a"c+pz) + c.c.1 

2 -3 +6 p 
w = dp-l  [ i e ,  ei(asi-bz) +i@ ei(aoi+pz) + . .  1 

2 -4 +d p Lief ei(a+2pz) + C.C.] + 6 2 p - 3 ~ 1  + . . . , 

+d [icl;' i i ~  cos 02, ei(asc-pz) +ia;' DL cos e,d, ei(avc+pz) + c . .  c 1 
p = c[ia,o' ULAo eiaac + C.C.] 

+d2pP3 ['ti?' UL cos ei(a+2bz) + c.c.] + . . . , (4.4) 
h A A h  

where Ao = bjAo, A, = bjA, and A, = bjA,. 
It follows from the expansions of the x- and z-momentum equations that the 

leading-order solutions for the streamwise and spanwise velocities of the oblique 
sinuous mode, fi, and fi,, satisfy the equations, 

(4.5) 
A h  

La,  U s  = --UL sin20a, , La$ e, = iu;  sine cased, , 
where we have defined the operator 

a a  a 2  

a -  aT ax, a y2 
L --+-+iiaVLY-A- 

with a acting as a parameter. Solving (4.5) by Fourier transform, we obtain 

6, = -UL sin20n,(0) , e, = iUL sin o cos , (4.7) 

where 

and 

L2 =a,u:r , s =  l A a f u ;  3 (4-9) 
Siyilarly, the streamwise and spanwise velocities of the oblique varicose mode, fi, 

(4.10) 

and W,, are found to be 

fi, = -U: sin2 O , I I ; ~ )  , W c  = -iDL sin 0, cos e,n,(O) , 
where 

(4.11) 

and 

QU = a,ULY , S" = ;nav'u;. (4.12) 

The O(62p-4) and O(d2pP3) terms in (4.1) and (4.3), and 0(a2pp2)  term in (4.2) are 
associated with the difference mode generated by the interaction between the oblique 
sinuous and varicose modes. They are only needed for the calculation of the extra 
contribution to the amplitude equation from the phase-locked interaction. The details 
concerning those terms are relegated to the Appendix since the focus of this paper is 
on the resonant-triad interaction. 
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mode only, namely 

with D2 satisfying 

Here for later convenience, we have defined 

The vertical velocity at 0(ep2), V2, consists of the component of the planar sinuous 

v2 = P2 eicroC + C.C. , 

LNd P 2 , Y  Y = Ll (Rso, 0)io . (4.13) 

After solving (4.13) and matching the solution with the outer expansion, we find 

cJ' - c; = P,y(+co) - P,y(-co) = ni sgn(UL)bjsj . (4.14) 

In order to determine the jumps (q - E;) and (q - c), we need to solve for the 

(4.15) 

vertical velocity V, at O(6p2) (see (4.2)). It can be written as 

v3 = p3s ei(msCEL?z) +P, ei(aL5+L?z) + . . ,  

with P3,s and p3, satisfying 

LNr P3s,yy = L1(as, P)A, + iaSoa,2 U: sin20,Aoni(2) , (4.16) 

(4.17) 

The forcing term R, in (4.17) is contributed by the interaction between the oblique 
sinuous mode and the forced difference mode. It is found that 

(4.18) 

where L'F) and nf) are defined by (A2). Equations (4.16) and (4.17) are solved again 
by Fourier transform to obtain P3,,yy and P 3 L . , ~ ~  respectively. Matching P3s,y and 
D30,y with their corresponding outer solutions gives 

LNL, P3v,y = Ll(a,, /?)A, + ia,ocr; U z  ~ i n ~ 6 & 7 ; ( ~ )  + R, . 

R, = iiasoa; q 3  sin2 oj [A,II;(') + 2iasO(aj q ) - 1  sin2 B ( L Z , ( O ) L Z ; ( O ) ) ~ I  , 

- = P,,,(+co) - P3s,y(-co) = nisgn(UL)bjgj + h,N, , (4.19) 

(4.20) i? J J  - c^- = P3,,,(+0o) - ?,v,y(-co) = xi sgn( U$jS; + h,N, + h,N, , 
where 

h, = 2nia,oa%a,' UL I UL I sin2 8, , 

h, = 2nia,oa~a;' ULl ULl sin2 6 , 

h, = nia,oa$x;' U:IULI sin2 6, , 
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Here, the constants c, c,, etc. are defined in (A8), and the kernel 
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with sf given by (A3). 

5. Amplitude equations 

amplitude equation for the oblique sinuous mode: 
Substituting the jump (4.19) into (3.24) and using (4.21), we obtain the following 

The coefficients Zg and f, are defined by 

Zg = f"/(-ia;'f,) , f, = 2hsb26'/(-ia;'fs) , 

where 

In calculating the coefficients, we have used the symmetry relation (3.12). Throughout 
this section, the mean-flow quantities, U' and Uz, take the values at the upper 
critical layer. 

Substituting (4.20) into (3.25), and using (4.22), (4.23), (3.39), (A 6), we obtain the 
amplitude equation for the oblique varicose mode: 

+a0 dA, *. aA -++cv=r 
dT gdxl '1 5' e-Suut3~O(x 1 - 05, T - ~5)AJ(x i  - ~ 0 5 ,  T - 0 0 4 )  d 5 

+ f P ~ + ~ + ~ ' ( 5 ) K f ~ v l ~ A S ~ X l  - 4, T - q5)AJ(x1 - d - vl ,  T - 05 - v l )  

xA,(xi - 05 - fly, T - 05 - aq)d 5 d y , (5.3) 

where coefficients tg, T, and f, are given by 

(5.4) 

tg = f^/(-ia;'f,) , f u  = 2h,lb126/(-ia;' f,) , 
rp = 4n2a2,011)a;2 sin2 df sin2 8,621b12u:8/(-i a, - 'f") > 

f^ = 2ia,c-'jl - iar'f, , 
h u; 

f, = j 2  + 271ib2- . u;1Uc1 ' 
the kernels K ,  and K f  are defined by (4.24) and (A7). 

Substitution of (4.14) into (3.20) leads to 

where 

Equation (5.5) shows that the planar sinuous mode evolves linearly, although it 
has a finite magnitude as specified by (2.16). The coefficients Zg, tg and cg can be 
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interpreted as the group velocities of the three modes respectively, and take complex 
values in general. 

Note that the analysis presented is valid for any symmetric flow. The coefficients 
involved in the amplitude equations are expressed in closed forms in terms of the 
basic-flow profile and the associated solutions of the Rayleigh‘s equations. The 
evaluation of these coefficients requires a numerical treatment in general. However, 
for the profile (2.1), all the coefficients except rp can be calculated analytically, as will 
be shown in $6. 

The appropriate initial condition depends on whether the spectrum of the initial 
disturbance is discrete or continuous; the latter corresponds to the case where the 
disturbance consists of three wavepackets. In order to make further progress, we 
consider the special case where 

A, = As(xi)e+sT , A, = &(xl)e-iaJuT , = Ao(xl)e-iaaSoT , (5.7) 

(5.8) 

and further assume that 

as& - aS = a,S, , i.e. a,(& - S) = -a,(& - S,)  = A . 

Nevertheless, S, SO and S, do not necessarily have the same value, i.e. the phase 
velocities of the three waves can differ by O ( p ) .  Substituting (5.7) into (5.1), (5.3) and 
(5.5), and using (5.8), we find that A,, A, and A,, are governed by 

(5.11) 

where 

K(<,  r]) = K,(<)Kf(q)  eiucd(6+v) . 
The coefficients in the above equations are given by 

Ic, = f , ~ / f ” ,  Y, = 4niaSoa~a;lU~~U’,lb2$* sin20,/f”, (5.12) 

IC, = f ~ ” / f ^ ,  K = 471iaSoa,2a,i~~~l~b12$sin2~/f^,  (5.13) 

(5.14) 
KO = fsSo/f . (5.15) 

In order to match with the linear stage upstream, the amplitudes As, 2, and A. 

A“, + A:’) eKsxl , xu + ALO) eKoxl , A0 +Ar)eKoX1 as xi + -a, (5.16) 

where the complex numbers A$) and A r )  characterize the scaled initial amplitudes 
of the three modes respectively. The development of the resonant triad is governed 
by (5.9), (5.10) and (5.11) together with (5.16). 

In order to reduce the number of parameters, we rescale the amplitude equations 

Yp = 4712~$a!a;2 sin2 0, sin2 6,$21b12U’,4b/f^ , 

should have the ‘initial’ conditions (see e.g. Goldstein & Leib 1989): 
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by introducing the following new variables : 

f = 1 ~ 0 ~ x 1  - X O  , X = A/(Ic , , )~ , 2 = A/ICO,  , (5.17) 
A s -  - As e-i(Ts++"lKoiX1) /As 7 (5.18) 
A v -  - Au e-i(T"+u;'Koixl) /A, , (5.19) 

A. = A. e-i(To+KoiXi) I K I / K t r  7 (5.20) 

where KO, and lcoi are the real and imaginary parts of ICO respectively, and the real 
constants X O ,  TO, T,, T,, 1, and 2, are chosen to satisfy 

eiTs 1, = A ~ O )  e ~ s x ~  eiTu 1 - A$) e ~ ~ x ~  
eiTo &I = A!) exo , 9 v -  7 

where 

IC, = (IC, - io;'rcoi)/lco, , IC, = (IC, - ia;'ICgi)/qr . (5.21) 

After rescaling, the amplitude equations and the initial conditions become 

-- - E,AS + xei4 r, d A, 
d x  

e-suut3+iuvdt &(a - 5)A:(a - o,() d 5 , (5.22) 

(5.24) 

as X-+- - -co ,  (5.25) 

(5.26) 

Clearly, x represents the initial magnitude of the oblique varicose mode relative to 
that of the oblique sinuous mode, 4 the initial phase difference between the three 
waves, and A the phase-velocity mismatching. The parameter 2 characterizes the 
initial amplitude of the oblique sinuous mode relative to the planar sinuous mode. 

6. Application to a plane wake 
Having presented the analysis for a general symmetric shear flow, we now specialize 

it to the flow with the profile (2.1). The advantage of choosing this profile is that 
it allows us to evaluate most of coefficients analytically. On the other hand, it fits 
the distribution of a typical wake reasonably well, as demonstrated by Mattingly & 
Criminale (1972). The two critical levels are located at the two inflexion points, say 
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k y , .  For the profile (2.1), 

y , = k l n ( 2 + , / 3 ) ,  U = + 4  c -3q'? U=f' c 3 3  ' (6.1) 

As shown in $1, the streamwise wavenumbers of the three participating modes in the 
triad are 

1 u v = 4 .  a , o = 2 ,  a s = 4 ,  I 

For the neutral sinuous mode (2.2), it follows that y + ky,, 

A comparison with (3.10) indicates that the constants bl and b2 can be identified as 

(6.2) 
b E b , = b Z = j .  2 

A straightforward calculation gives 

1 J2 = 8[2 + - ln(2 + a)] 5", = : , 8 
Substituting (6.1)-(6.3) into (5.2) and (5.6), we obtain, 

1 , 
1 f" = :ia,c-' + 8a;'i 

f = :ia,oc-' + 8a; 

- 2 - - ln(2 + a)] , 
- 2 - - ln(2 + a)] . 

J3 

Js 
1 

Substitution of the above values together with (6.2) into (5.12) and (5.15) yields the 
coefficients K ~ ,  & and KO. 

For the neutral varicose mode (2.3), it can be shown that as y + +yc, 

J z f i -  4" + I!- + -(y + y c )  + . . . , 3 9  
and hence it follows that 

b A h  = bl = -b2 A J z  = - 
3 

The integrals jl and .?2 are found to be 

It follows from (5.4) that 

Substituting f v  and f^ into (5.13), we obtain ic, and x. 
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The equation (3.41) subject to (3.40) and (3.42) is solved by a shooting method, 
which gives 

The coefficient rp is then calculated by using (5.14). 

A A h 

D1 = D2 = D -0.452 . 

7. Study of the amplitude equations 
7.1. Very viscous limit: ;1 -+ co 

We consider the very viscous limit of the amplitude equations corresponding to ;1 -+ co. 
This situation can occur when the initial magnitude of the planar sinuous mode is 
relatively small so that nonlinear effects come into play further downstream, i.e. closer 
to the neutral station than specified by (2.12). Consequently, the critical layers have 
already become equilibrium and viscous dominated when nonlinearity starts to assert 
its influence. By introducing the variable change 5 = A-1/3t,  y = A-1/3?j, and taking 
the limit A -+ 00, we find that the full equations (5.9), (5.10) and (5.11), to leading 
order, reduce to 

-- - &As + YsAoA; , d As 
dR 

(7.3) 

where 

2 = r ' x 1  , (7.4) 

(7.5) 
li-, = Ilcs , 2" = Ilc, , 20 = ;1KS , 

Here the amplitude functions of the two oblique modes are rescaled so that the phase- 
locked feedback term is retained at leading order. The coefficients of the nonlinear 
terms are given by 

k - A-1/2Xs , A, = A-1'2Ju , ko = A0 4 . s -  

where 

I ,  = { i+k(i) d 5 } { i+k('1) d '1} 

with the parameter s in the kernels being assigned the value 1. 
We now discuss the validity of the limiting amplitude equations (7.1)-(7.3). Equa- 

tions (2.17) and (7.5) indicate that the growth rates of the three modes are O ( 2 - l ~ ~ ' ~ ) .  
On the other hand, since 2 = O(1), x1 = O(A) (see (7.4)). It follows that the non- 
parallel-flow correction, i.e. the second term on the right-hand side of (2.21), is of 
O(A*E ' /~ ) .  Therefore, (7.1)-(7.3) remain valid as long as d O(A- 'E' /~) ,  i.e. 

;1 4 O(R"*) , (7.6) 

as can be deduced after using (2.20). When 1 - O(R1's), the non-parallel-flow 
correction will become a leading-order effect, i.e. it will be at the same order as the 
growth rate itself. Nevertheless, the appropriate amplitude equations for this latter 
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rkgime can be obtained by replacing the linear terms in (7.1)-(7.3) by (ys2 + As), 
(yL2 + A,) ,  and (yo2 + A,) respectively, where y s ,  As, etc. are some suitable constants. 
The nonlinear terms remain intact. Since this rkgime occurs at a much slower spatial 
scale, and hence may be of less importance, we shall not pursue it any further in the 
present paper. 

7.2. Super-exponential growth induced by resonance 
We now study the amplitude equations (5.22)-(5.24) with 2 = 0, which govern the 
parametric resonance stage and are valid when (2.19) holds. The solution to equation 
(5.24) simply is 

Substituting A0 into (5.22) and (5.23), we find that As and A, have solutions of the 
form 

A0 = e' . (7.7) 

m m 

n=O n=O 

m m 

n=O n=O 

where at' = 1 and at' = 1 so that the initial conditions (5.25) are satisfied. Substituting 
(7.8) and (7.9) into (5.22) and (5.23), and equating the coefficients of like powers, we 
obtain the recurrence relations 

where 
0, + itsou + 1 - ioud @r, + 0 - io,d 

p = (rcs - it; + 1)/2,  4 = , r =  
20, 20, ' 

K,o + 1 + ioJ r " =  G, + RVov + 0 + ioud 
j? = (Ic, - 2; + 1)/2 , q = 

20, 20, 
7 

and Z,(q) is defined by 

<2 e-s'Jo~'-2~o(n+q)~ d < . 3.1+m M q )  = 4 0 3  + 4 )  

Note that I n ( q )  = 1 when s = 0 (the inviscid limit), and that for any s, 

In (q )  -+ 1 as n -+ 00. 

It follows from (7.10) and (7.13) that 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 
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where 
r = YsF;/(20J6 . 

Repeated use of (7.18) yields 

(7.19) 

where we have defined ( z ) ,  = T ( z  + n ) / I ' ( z )  with r being the usual gamma function. 
As in Goldstein & Lee (1992) and Wundrow et al. (1994), application of Laplace's 

method (Bender & Orszag 1980, p. 304) to the first sum in (7.8) with the coefficients 
(7.19) gives its asymptotic behaviour at large distance, namely 

00 

C a',") e2nx + A:) exp[-$(p + 3q + 3r - ;)x + a, d 4 ]  , (7.20) 
n=O 

as X + +a, where 

Substituting (7.20) and (7.22)-(7.24) into (7.8) and (7.9) and making use of (7.14) and 
(7.15), we finally obtain 

A, + (A$) + x ei($+arg A?)) exp(boo% + a, e"4) , (7.25) 

(7.26) A, + (A:) + x-1 ei('#'+arg yo) A*(s) exp(bLx + e"4) , 4 
where 

b, = $(rcs + rc:) + :di . (7.27) 
Since the real part of a, is always positive, (7.25) and (7.26) show that the resonance 
always causes the oblique sinuous and varicose modes to grow super-exponentially, 
regardless the values of the coefficients Fs and F,. It is well known that super- 
exponential growth can occur through the usual parametric resonance of subharmonic 
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type (see e.g. Goldstein & Lee 1992; Wundrow et al. 1994). The analysis in this 
subsection can be regarded as an extension to the more general, non-subharmonic case. 

As a result of the rapid amplification in the form of the super-exponential growth, 
the two oblique modes may eventually overtake the planar sinuous mode. Depending 
on the initial magnitude of the oblique modes, the subsequent stages can take two 
distinct forms. (a) If the magnitude of the oblique modes is algebraically small at 
the start of the parametric resonance, the oblique sinuous mode will soon grow to 
O(e7/*) to produce an extra back reaction on the oblique varicose mode through the 
phase-locked interaction. The evolution of the two oblique modes is then governed 
by the full equations (5.22) and (5.23), while the planar sinuous mode still evolves 
linearly. (b )  If the oblique sinuous and varicose modes are exponentially small initially, 
then in the subsequent stage the planar sinuous mode can become nonlinear with its 
development governed by nonlinear critical-layer equations such as those of Goldstein 
& Hultgren (1989). On the other hand, the two oblique modes evolve over an inviscid 
spatial scale which is faster than that of the planar sinuous mode (cf. Wundrow et al. 
1994). One can choose a distinguished magnitude for the oblique modes so that the 
phase-locked interaction between 'them also takes place in this stage. 

Because the three-dimensional modes have smaller growth rates in the linear stage, 
scenario (b)  is likely to occur in experiments. A complete understanding of this 
transition route requires more analytical and numerical work, and is a subject of our 
future study. The results obtained here for the parametric-resonance stage already 
indicate that the resonant triad of mixed modes may play an important r6le in causing 
transition in a plane wake. We wish to bring these results to the attention of the 
experimentalists with the hope that some experimental work could be devoted to it. 

7.3. Numerical study of the amplitude equations 
While the asymptotic analysis (for 2 = 0) predicts the behaviour of the disturbance at 
large distance, it does not necessarily capture the transient feature of the development, 
nor is it valid for # 0. For this reason, we integrate the (rescaled) amplitude 
equations (5.22) and (5.23) numerically using an Adams-Moulton (implicit) finite- 
difference scheme with sixth-order accuracy. As in Wu et al. (1993), the integrals over 
the infinite domains (see (5.22), (5.23)) are approximated by those over large but finite 
domains, the size of which is determined by trial and error. 

The coefficients that we substitute in are those calculated for the profile (2.1). They 
depend on Uo, which in turn is related to the velocity deficit, an important parameter 
characterizing a plane wake. Both UO and the velocity deficit vary considerably from 
the near field to the far wake. In our calculation, we choose UO = 3.667, which 
gives a deficit of 0.272, typical of the streamwise location where three-dimensional 
disturbances are observed to develop (e.g. Corke et al. 1992). For such a value of VO, 
the linear growth rate of the oblique sinuous mode is about half that of the planar 
sinuous mode, while that of the oblique varicose mode is two magnitudes smaller (for 
A = 0).  The other parameters are x, 4, A, A and 2. 

Since our primary interest is in the resonant-triad interaction, we first set 2 = 0. Our 
calculations show that depending on the size of 2, which represents the magnitude of 
the oblique varicose mode relative to that of the oblique sinuous mode at the start of 
the resonance, two evolution scenarios can arise. 

Given that the (oblique) varicose mode has a much smaller linear growth rate than 
the sinuous oblique mode, in natural transition x is likely to be small. So we first 
present the results for relatively small x. In figures 1 and 2, the parameter A is set 
to zero, i.e. the phase velocities of the three modes are perfectly matched. Figure l(a) 
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FIGURE 2. (a) LnI&I us. 2 for A = 0, 1 = 0, 1 = 30 and 1 = 100. The dotted lines represent 
the asymptote (7.25), and the dashed line the exponential growth. (b )  Lnl& us. 2 for I = 0, 
1 = 30 and 1 = 100. The dotted lines represent the asymptote (7.26), and the dashed line the 
exponential growth. (c) The instantaneous growth rate Re(z"/&) us. 2. The dotted line represents 
the asymptotic result and the dashed line the scaled linear growth rate of of the oblique sinuous 
mode. ( d )  The wavenumber correction Im(~o/ ,&, )  us. Z. The dotted line represents the asymptotic 
result. A 'gap' appears because we cut off the high peak in order to accommodate the picture with 
an appropriate graphical resolution. 

shows the downstream development of As and 2, for x = 0.01 and il = 0 (inviscid 
limit). The result is representative for x < 0.1. As illustrated, the disturbance evolves 
through three distinct stages. The first is the linear stage, in which all modes evolve 
independently. The gain in the amplitude of the oblique varicose mode is hardly ap- 
preciable because its linear growth rate is very small. On reaching L, the disturbance 
enters the second stage in which the two sinuous modes have attained a certain magni- 
tude so that they interact to enhance the growth of the varicose mode. An interesting 
feature is that the varicose mode evolves almost exponentially over a considerable dis- 
tance, but with a rate two magnitudes larger than its linear growth rate, and twice that 
of the oblique sinuous mode. At the same time, the sinuous oblique mode still follows 
linear theory up to point F .  This is because before reaching F ,  the varicose mode is too 
weak to produce any significant feedback effect on the oblique sinuous mode. The third 
stage starts from F ,  in which both sinuous and varicose oblique modes become suffi- 
ciently large so that they are coupled through the interaction with the plane sinuous 
mode, and undergo rapid amplification simultaneously. Finally, they both approach 
the super-exponential growth, confirming the prediction of the large-distance asymp- 
totic analysis. The development of each mode is revealed more clearly by their instan- 
taneous growth rates Re(R/A) in figure l(b). It shows that following the linear stage, 
the growth rate of the varicose mode changes abruptly, and then remains almost con- 
stant for a rather long distance, corresponding to the 'quasi-exponential' growth of & 
noted earlier. Note also that the sudden change of the growth rate is accompanied by 
abrupt adjustment of the wavenumber correction Im(A,/A,), as sHown in figure l(c). 

We have also performed calculations for other values of 4, and find that the 
qualitative features of the development persist, although for some 4 the growth rate 
and wavenumber correction of the oblique varicose mode adjust themselves in a more 
violent manner than those shown in figure l(b,c). 
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FIGURE 3. Effect of phase-speed mismatching: (a) Re(Z"/&) us. X; (b) '  Re(zs/&) us. X; 
( c )  -Im(Zo/&) us. x; (d )  -Im(&/&) us. X. Curves (i), (ii) and (iii) correspond to A = 0, 0.5 
and 0.9 respectively, while the dotted lines represent the asymptotic behaviours. Other parameters 
are x = 0.01, q5 = 0 and i = 10. A gap appears in ( c )  for the same reason as in figure 2(d).  

- 

The effect of viscosity parameter A is investigated. Figures 2(a) and 2(b) show 
the development of the oblique sinuous and varicose modes respectively for three 
different values of A. As expected, viscosity acts to delay the position at which the 
resonance starts to take place, but cannot suppress the ultimate super-exponential 
growth. In figures 2(c) and 2(d),  we plot Re(z"/&) and I m ( ~ u / & )  respectively. It is 
interesting to note that as viscosity increases, the growth rate and the wavenumber 
correction become more and more spiky during the adjustment. This is in contrast to 
the intuitive expectation that viscosity has a smoothing effect. Another feature worth 
noting is that for different values of A, the curves of Re(&,/&) are pinched together, 
indicating that the 'quasi-exponential' growth rate is largely independent of viscosity, 
or of Reynolds number. 

The effect of mismatching of phase speeds A is shown in figure 3(a-d). It is seen that 
phase-speed mismatching can cause the instantaneous growth rates (figure 34b)  and 
the wavenumber corrections (figure 3c,d) of the oblique varicose and sinuous modes 
to oscillate before they approach the super-exponential growth stage. Phase-speed 
mismatching also smooths the 'jump' of the growth rate of the oblique varicose mode 
(see figure 3a). Nevertheless, the 'quasi-exponential' growth of the oblique varicose 
mode persists for different values of A ,  and is hardly affected by this effect. 

We now turn to the case where x is relatively large. This situation may occur when 
the varicose oblique mode is preferentially excited. (It is possible to excite sinuous 
and various modes independently (Marasli et aZ. 1989).) The amplitude evolution and 
the instantaneous growth rates are displayed in figures 4(a) and 4(b) respectively for 
= 2.0 in the inviscid limit (A = 0). A comparison with figures l(a) and l(b) indicates 

that the evolution scenario is different from the small-x case in the sense that the 
disturbance now evolves through four stages. The first is of course linear. However, 
following the linear stage, i.e. between points L and P ,  it is the sinuous oblique mode 
rather than the varicose oblique mode that experiences an enhanced growth. The dif- 
ference arises because the varicose mode now has a relatively large initial magnitude 
so that it first interacts with the planar sinuous mode to accelerate the oblique sinuous 
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FIGURE 4. (u)  LnlAsl and lnl& us. 2 for A = 0, x = 2.0, 4 = 30" and /z = 0. The dotted 
lines represent the large-distance asymptotic behaviours (7.25) and (7.26), and the dashed line the 
exponential growth. ( b )  The instantaneous growth rates Re(&/&) and Re(zo/Ao) us. X. The dotted 
line represents the asymptotic result and the dashed line the scaled linear growth rate of of the 
planar sinuous mode. 

- 
X 

mode. Figure 4(b) indicates that the oblique sinuous mode evolves exponentially in the 
second stage, with a rate almost identical to that of the planar sinuous mode. Once the 
sinuous oblique mode has grown to a certain extent, it then causes the varicose mode to 
amplify rapidly, again in a quasi-exponential manner with a rate twice that of the sinu- 
ous oblique mode. This third stage (between P and F in figure 4a) and the fourth stage 
(starting from F )  are similar to the second and third stages in the small-)l case respec- 
tively. The extra stage in the present case, i.e. stage two, serves to compensate the small 
initial magnitude of the oblique sinuous mode. Calculations with viscosity included 
reveal that the above scenario is fragile in the sense that a small viscosity can eliminate 
the second stage. For example, when 1 = 2, the oblique sinuous mode no longer 
undergoes an enhanced growth prior to the varicose mode, as shown in figure 5(a,b). 
On the contrary, the first effect of the resonance is to promote the varicose mode. 

Finally, we investigate the r6le of the phase-locked feedback term by examining 
the development of the oblique modes at different values of 2. As figure 6(a,b) 
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FIGURE 5. As figure 4 but for L = 2. 

illustrates, for small and moderate 2, the enhanced growth in the earlier stages is 
largely induced by the resonant-triad interaction, while the phase-locked interaction 
is negligible. However, once the oblique modes become sufficiently large, the phase- 
locked interaction comes into play, causing the oblique varicose mode to evolve more 
rapidly than the super-exponential growth (see figure 6a). Although the phase-locked 
interaction contributes a term only to the amplitude equation of the oblique varicose 
mode, its effect is also felt by the oblique sinuous mode through the resonance term. 
As a result, the development of the latter mode is further enhanced (figure 6b). 

8. Conclusion and discussion 
In this paper, we have shown that by choosing appropriate sinuous and varicose 

modes of a symmetric shear flow, they can form an active resonant triad of non- 
subharmonic form. The development of the triad is studied in the non-equilibrium 
critical-layer rkgime. We show that the resonance can induce interesting and intriguing 
transient growth, and may eventually lead to super-exponential growth in the ampli- 
tudes of the oblique sinuous and varicose modes. The possible subsequent stages are 
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pointed out with their features being highlighted. We suggest that such a resonance 
may provide a possible explanation for the development of three-dimensional varicose 
modes. This resonance, together with the phase-locked interaction (Wu & Stewart 
1996~)  and the side-band instability (Wu & Stewart 1996b) may represent three major 
mechanisms which cause rapid amplification of three-dimensional disturbances in a 
plane wake. 

Our results show that although in the linear regime the varicose mode has a 
smaller growth rate, its development can be significantly enhanced by the sinuous 
modes through nonlinear resonance. Consequently, sufficiently far downstream it 
attains the same evolution behaviour as the oblique sinuous mode as indicated by 
(7.25) and (7.26). Moreover, it follows from (5.18), (5.19), (5.26), (7.25) and (7.26) that 
as x + +a, 

The right-hand side is of order one except for some special values of and 4. This 
implies that in general the ratio of the (unscaled) magnitude of the varicose mode to 
that of the sinuous oblique mode approaches an O( 1) constant. This is so even when 
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x -+ 0. Therefore, no matter how small the varicose mode initially is, it cannot be 
dismissed if the transition processes far downstream are to be understood. 

For the wake with the profile (2.1), the frequency of the oblique sinuous mode 
differs from that of the planar sinuous mode only by 12.5%, and hence can be 
regarded as within the side-band of the latter mode, while the oblique varicose mode 
is the $-subharmonic. Therefore, according to our results, two peaks are expected to 
appear in the energy spectrum of the disturbance with one centred at the frequency 
of the most unstable sinuous mode, while the other is at the $-subharmonic. We note 
that two such peaks are eminent in figure 8 of Sat0 & Saito (1978). Unfortunately, 
a detailed quantitative comparison is not yet possible because of the lack of relevant 
experimental data. Clearly, more experimental work is needed in order to confirm the 
r8le of the resonance identified in this paper. 

Given that the usual subharmonic resonance (of sinuous modes) is inactive, there 
is no reason to expect the i-subharmonic to play a special r8le. Indeed, Sat0 (1970) 
and Sat0 & Saito (1978) pointed out that the disturbance in a flat-plate wake does 
not contain a predominant i-subharmonic. However, secondary instability theory 
(Herbert 1988 and references therein) tends to suggest that a i-subharmonic should 
develop. Based on such a consideration, Corke et al. (1992) excited a pair of oblique 
subharmonics as well as a planar fundamental wave and mapped out the downstream 
evolution of each mode. They observed that the subharmonics exhibited an enhanced 
amplification and attributed this to the secondary instability mechanism based on 
Floquet theory. However, although the measured growth rate of the subharmonics 
is much larger than that predicted by linear theory, it is comparable to that of the 
planar fundamental. Therefore, there is little justification for treating the fundamental 
as being quasi-steady. Recently, Wu & Stewart (1996~) suggest that the experimental 
results of Corke et al. (1992) can be explained by phase-locked interaction, in which 
the evolving nature of the fundamental is taken into account properly. In this theory, 
the i-subharmonic does not have a special status in the sense that other oblique 
modes, provided that they are phase-locked with the planar mode, can be amplified 
in the same manner. 

The r81e of three-dimensional subharmonics was also investigated by Lasheras 
& Meiburg (1990) by using an inviscid vortex method. While it is found that the 
interaction between the fundamental and the subharmonic can lead to distinct vortex 
structures, there is no direct evidence to suggest that the energy growth of the 
subharmonic is accelerated by the fundamental through resonance. The temporal 
development of the two-dimensional subharmonic? was simulated by Chen et al. 
(1990) for a compressible wake of low Mach number. Their results show that the 
subharmonic overtakes the fundamental when the latter starts to decay. However, 
the growth rate of the former never exceeds the value given by linear theory. This 
perhaps indicates that the two-dimensional subharmonic resonance (i.e. the Kelly type 
of resonance) is insignificant in a plane wake, a conclusion consistent with the result 
of Leib & Goldstein (1989). 

t The two-dimensional subharmonic is also studied by Meiburg (1987) via a discrete vortex 
model. However his results are related to the vortex pairing process in the near wake of a bluff 
body, rather than to transition, which occurs further downstream where the von Karman vortices 
have almost completely died away; see e.g. Cimbala et al. (1988). Nevertheless, it is interesting to 
note that in Meiburg’s model, the subharmonic introduced into the upber layer is not in phase 
with that in the lower layer so that the symmetry about the centreline of the wake is broken. 
In some sense, this can be interpreted as the subharmonic consisting of both the sinuous and 
varicose components. 
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Finally, we point out that the idea of including sinuous and varicose modes so 

that they form an active resonant triad can be applied to compressible symmetric 
shear flows. The calculations of Chen et al. (1990) show that for a compressible 
wake, two-dimensional modes still have larger linear growth rates. Therefore, an 
explanation of the development of three-dimensional disturbances relies on nonlinear 
mechanisms, for which the resonant triad of mixed modes is a possible candidate. 
However, because of the compressibility effect, the Squire transformation is no longer 
applicable. A detailed study of the dispersion relations of both the sinuous and 
varicose modes is necessary in order to establish the existence of such a triad. We 
plan to investigate this aspect in the future. 

The author would like to thank Mr P. A. Stewart for his suggestion of using the 
scaling (2.18) to include the phase-locked interaction effect. Thanks are also due to 
Professors J. T. Stuart, D. W. Moore, Dr S. J. Cowley for helpful discussions, to Dr 
M. E. Goldstein for his encouragement, and to referees for comments. This research 
is supported by a Nuffield Foundation award for newly appointed science lecturers. 

Appendix. 
The quadratic interaction between the oblique sinuous and varicose modes gen- 

erates, through the jump (A5), an O(d2p3)  difference mode in the main part of 
the flow. The O(d2pP3) pressure ip turn d;ives O(62~cl -4)  streamwise and spanwise 
velocities in the critical layers, i.e. Uf and W f  in (4.1) and (4.3). It is found that 

fij = -U: sin’ofny) , V?f = iU: sin 6, cos %fL$’” , (A 1)  

where 

szf = a , U : . Y ,  s j = j  1 Ja2 f ( 7 2  . 

The O(62p-2) term in (4.2), Vl, and 0(d2p-3) terms in (4.1) and (4.3), Wl and Wl, are 
velocities directly driven by the Reynolds stresses produced by the interaction between 
the two oblique modes. As far as deriving the amplitude equation is concerned, we 
only need to solve for V,. It takes the form 

V1 = p, ,i(a,:-2Pz) + p e i a d  

where the second term on the right-hand side is associated with the sum mode, which, 
unlike the difference mode, is two-dimensional and does not play an active role (cf. 
Wu & Stewart 1996~).  The function V1 satisfies 

i, tl,y = ia,oa; Uf sin2 9, - 2ia,o(at U:)-’ sin2 %(n~o)n,*(o))~] . (A 4) 

9 

Solving the above equation and matching it to the outer solution, we find that 

C+ J - C y  = Af(x1,  T )  , (A 5 )  

where 
f o o  

Af = hj  1 Kf(S)A,(xl - t, T - 5)A:(x1 - 05, T - 05)d 5 , (A 6) 

hj  = 2nia,oa$~;~~~,~:~ sin2 %,b& ; 
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the kernel function K f  is defined by 
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